
International Journal of Computer Trends and Technology Volume 72 Issue 11, 228-235, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P124 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

From Planning to Rollback: Best Practices for Faster,

Safer and Secure Kubernetes Deployments with SRE

Principles

Praveen Chaitanya Jakku

DevOps Engineer, Aubrey, TX, USA.

Corresponding Author : pcjakku@gmail.com

Received: 11 October 2024 Revised: 12 November 2024 Accepted: 26 November 2024 Published: 30 November 2024

Abstract - This article presents a structured approach to Kubernetes release management inspired by Site Reliability Engineering

(SRE) principles. It emphasizes balancing fast software releases with high reliability and availability, aiming for zero-downtime

deployments even when issues arise. The approach includes incremental releases, canary deployments, blue-green deployments,

and rolling updates to reduce risks and disruptions. It also highlights the importance of feature flags, automated CI/CD pipelines,

and strong security practices. Additionally, the article discusses the role of robust monitoring, versioning, chaos engineering,

and thorough documentation in optimizing the release process. By adopting these strategies, teams can deliver software

efficiently, securely, and with minimal risk, ensuring a seamless experience for users and aligning with business goals.

Keywords - Site Reliability Engineering (SRE), Kubernetes release management, Incremental releases, Parallel deployments,

Feature flagging, Continuous Integration and Continuous Delivery (CI/CD), Security in kubernetes deployments, Image

scanning, Role-Based Access Control (RBAC), Rollback strategies, Chaos engineering, Release prioritization.

1. Introduction
Managing software releases in a Kubernetes environment

can be challenging, especially when balancing the need for

speed, security, and reliability. Many teams are turning to Site

Reliability Engineering (SRE) principles to address these

challenges to guide their release management processes. SRE

helps organizations release software quickly and safely while

maintaining the stability and performance of their systems.

This article explores how you can apply SRE-inspired

practices to Kubernetes release management. We will discuss

strategies like incremental releases, parallel deployments, and

feature flagging, which help reduce the risks of introducing

large changes in production. We will also dive into automation

techniques, including Continuous Integration and Continuous

Delivery (CI/CD) pipelines, and the importance of strong

security practices like image scanning and Role-Based Access

Control (RBAC).

Additionally, we will cover how tools like health checks

and chaos engineering can help make your releases more

resilient while ensuring that monitoring and feedback loops

allow you to improve your process continuously. By aligning

your release management with Service Level Objectives

(SLOs) and using a balance of safety measures, you can ensure

that your Kubernetes deployments are stable, scalable, and

prepared for anything that comes your way.

2. Release Management and Prioritization
2.1. Release Management

Release management is the process of planning,

scheduling, and overseeing the launch of new software

updates, versions, or fixes. It involves coordinating with

different teams to ensure everything is delivered on time and

smoothly. This includes testing updates thoroughly and

managing any risks to avoid problems. Good release

management helps deliver bug fixes, security patches, and

new features efficiently, improving the overall performance

and user experience. It also helps reduce mistakes, minimize

downtime, and ensure software updates are rolled out

organizationally.

2.1.1. Release Cadence
Release cadence is the schedule for software updates.

Some companies update their software often, like weekly or

bi-weekly, while others do it less frequently, monthly or

quarterly. The update frequency depends on the company’s

goals, resources, and the type of software. It is about how often

users get new features, improvements, or bug fixes.

2.1.2. Risk Assessment

When you evaluate a software release’s risks, you are

looking for potential problems that could happen after the

release.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

229

2.1.3. System Downtime

The system might stop working for a while, disrupting

operations.

2.1.4. Security Issues

The system could have weaknesses, making it easier for

hackers to attack.

2.1.5. User Experience Problems

Changes might make the system harder to use, like

confusing new features or annoying bugs.

For example

• Cluster Version Update: If a cluster is running outdated

software, it is more vulnerable to attacks. Upgrading is

crucial to maintain security.

• Code Changes Affecting Users: Introducing new code

that impacts users comes with the risk that new features

or fixes might not function as expected, leading to user

issues.

2.2. Release Prioritization

Release prioritization decides which software updates are

most important and should be released first. We consider two

main factors:

2.2.1. Urgency

How quickly the update needs to be released, often due to

issues like security vulnerabilities or critical bugs that need

immediate attention.

2.2.2. Impact

How many users will be affected by the update, and how

important the change is to them. For example, fixing a major

feature many people use has a higher impact than a minor

issue. By prioritizing updates based on urgency and impact,

we ensure the most critical changes are addressed first,

reducing risks and benefiting users the most.

Example

Issue-1: Cluster Version Update Due to Expiring Support.

• Risk: Security vulnerabilities from unsupported Cluster.

• Priority: High because security issues must be addressed

immediately to protect the system.

Issue-2: Code Changes for Users.

• Risk: New bugs or disruptions in user experience.

• Priority: Medium, depending on how critical the changes

are. If the changes affect many users, they may need to be

prioritized higher.

2.3. SLA and SLO

2.3.1. SLA

 An SLA (Service Level Agreement) is a contract that

defines the level of service a provider promises to deliver to a

customer. It sets clear expectations for how quickly issues will

be resolved. For example, an SLA might specify that urgent

security updates must be completed within 24 hours, while

less critical issues can take longer. This helps the customer

understand the service they can expect.

2.3.1. SLO

An SLO (Service Level Objective) is a specific target

within an SLA that defines the performance standards the

provider aims to achieve. For example, an SLO might state

that the system should be available 99.9% of the time,

meaning it can only be down briefly. SLOs help measure

performance and ensure the service meets customer

expectations.

2.3.2. Example with SLA and SLO:

• Security Patch: A security update might have an SLA of

being deployed within 24 hours of detection, with an SLO

achieving 99.9% uptime during the update.

• Code Changes for Users: A bug fix or feature release

might have an SLA of a 3-5 day deployment window, with

an SLO ensuring the update does not negatively affect

user experience more than 1% of the time.

2.4. Final Prioritization

• Security updates, like the cluster version update, always

take top priority because of the high security risk. These

updates should meet strict SLAs and SLOs to minimize

vulnerabilities.

• User-related changes, like bug fixes or new features, are

important, too, but they can wait until security updates are

finished. The urgency of these changes depends on how

badly they affect users.

By using SLAs and SLOs, organizations can establish

clear targets for how fast issues should be resolved and how

well the system should perform. This ensures that the system

remains secure, stable, and easy for users.

3. Incremental Releases
We can split big updates into smaller, manageable parts to

avoid major issues when launching new software. This

approach, known as incremental releases, lets us test changes

gradually before making them available to everyone. By

breaking updates into smaller chunks, we lower the risk of

serious problems and can fix issues more quickly. Incremental

releases provide faster feedback, easier rollbacks, and

continuous testing, which helps improve software quality over

time. Instead of releasing a large, complex update all at once,

we roll it out in stages, starting with fewer users. This helps

identify and fix issues early, ensuring the software stays stable.

3.1. Here are some Techniques to Implement Incremental

Releases

3.1.1. Feature Flags

Feature flags are like switches for your software. They let

you turn features on or off without updating the entire app.

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

230

This allows you first to test new features with a small group

of users or quickly disable a feature if it causes issues. Think

of them as a safety measure for your software releases.

3.1.2. Canary Releases

Think of canary releases as a small test group. You release

a new version to a small subset of users or servers. If

everything goes well, you gradually increase the number of

users or servers receiving the new version. This minimizes the

impact of any potential issues. Kubernetes is a popular

container orchestration tool providing built-in strategies for

canary deployments.

3.1.3. A/B Testing

Like a scientific experiment, A/B testing involves

comparing two versions of a feature or application. We can

route some user traffic to one version and the rest to another.

We can determine which version performs better by analyzing

user behaviour and feedback. Combining these techniques can

minimize the risk of major disruptions and deliver high-

quality software to our users.

4. Parallel Release Management: A Smooth

Transition
Parallel Release Management is a strategy where different

versions of software can run at the same time. If a new version

has problems, the old version can still be used. It is like having

a backup plan for your software. The main benefit is that it

reduces downtime and minimizes risks for users. Businesses

can test and deploy updates gradually, ensuring a smooth

transition between versions. Here are three common strategies

for parallel release management:

4.1. Blue-Green Deployment

Imagine you have two identical houses: a blue one and a

green one. You live in the blue house, but you want to renovate

it. Instead of moving out, you start fixing up the greenhouse.

Once the greenhouse is ready, you move in. You can quickly

return to the blue house if there are any issues. This process is

similar to a “blue-green deployment” in software. You

maintain two identical versions of your software. You can

switch from the old version (blue) to the new version (green)

without downtime. This approach reduces risk and ensures a

smooth update for your users.

4.2. Rolling Updates

Instead of updating everything at once, you gradually

update parts of your system. For example, if you have 10

servers, you might update a few at a time while the others keep

running the old version. This ensures your system stays up and

running throughout the update process.

4.3. Multiple Clusters

This strategy involves using multiple clusters, often

located in different places. You can test new updates on one

cluster while the others continue to serve users. This way, if

an update causes problems in one cluster, it does not affect the

others. Businesses can deploy updates smoothly without

interrupting service or affecting the user experience using

these techniques. This makes their systems more reliable and

easier to maintain.

5. Feature Branching and Versioning
We rely on two main practices to maintain stable and

reliable software: feature branching and versioning. Feature

branching allows us to separate work on different features by

creating individual branches. This way, developers can work

on their tasks without interfering with others. Versioning helps

us track and label different software versions, making it easier

to manage updates and revert changes when necessary. These

practices help us develop and release new features efficiently

while keeping the software stable.

5.1. Feature Branching

Feature branching is a practice where each new feature or

bug fix is worked on in a separate branch. This allows

developers to develop and test new changes without affecting

the main codebase (often called the main or master branch).

Once the new feature is complete and fully tested, it can be

merged into the main branch. To make it relatable, think of

building a house. Instead of constructing the entire house in

one go, you start with the foundation, build the walls, and

finally put on the roof. In software development, feature

branching works the same way. Each feature is like a separate

part of the house, developed in isolation to not interfere with

the rest of the structure. This approach ensures that new

features are developed without disrupting the current system.

5.2. Versioning

Versioning is the practice of keeping track of different

versions of your software. It helps ensure that the correct

software version is deployed to production and provides a

clear way to track changes over time. Versioning also

simplifies rollback if a new version introduces issues.Think of

versioning like editions of a book. Each new version reflects

a specific set of changes, whether bug fixes or new features.

In Site Reliability Engineering (SRE), versioning is vital for

managing software releases and makes identifying and

controlling different software versions easier.

5.3. Why Feature Branching and Versioning Matter:

5.3.1. Improved Collaboration

Feature branching enables developers to work on

different tasks simultaneously without disrupting each other’s

progress. This enhances productivity and fosters better

collaboration within the team.

5.3.2. Better Testing and Stability

By isolating new features in their branches, you can test

them without disrupting the main code base, helping keep

production stable.

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

231

 Fig. 1 Example for Branching and Versioning

5.3.3. Simplified Rollbacks

If a new version causes problems, you can quickly revert

to a previous stable version, reducing downtime.

5.4. Best Practices for Successful Implementation:

5.4.1. Automate Testing

Use automated tests to check that new changes work as

expected. This helps identify issues early in development,

reducing bugs and errors when the software goes live.

5.4.2. Establish Clear Versioning Standards

Set clear guidelines for versioning so that all team

members follow the same approach when managing software

versions. This keeps everything organized and easy to track.

5.4.3. Monitor Production

Keep a close eye on the production environment to catch

and resolve issues quickly. By effectively using feature

branching and versioning, SRE teams can streamline

development, improve software quality, and minimize

downtime, leading to a smoother and more reliable

deployment process.

6. Security Considerations
It is important to prioritize security and efficiency.

Kubernetes is flexible and scalable, but this also means there

are risks if it is not managed correctly. Following a sound

security strategy and using Kubernetes’ built-in features can

reduce vulnerabilities and make your deployments faster and

safer. Below are some best practices and tools that Site

Reliability Engineers (SREs) can use to ensure more secure

and reliable Kubernetes release management.

6.1. Image Scanning and Signatures

Before deploying your containerized applications to

Kubernetes, ensuring that the Docker images used are free

from known vulnerabilities is essential. By scanning container

images before deployment, you can identify potential security

issues in both the application code and any underlying

libraries. Imagine you are building a house. Before you start

building, you want to ensure the materials you use are safe and

strong. Similarly, before you deploy your software to

Kubernetes, you must ensure the “Docker images” (building

blocks) are secure.

6.1.1. How to do it

• Scan the Images: Use tools like Trivy or Clair to check

the images for security weaknesses. It is like inspecting

the wood for termites or the wiring for faulty connections.

• Sign the Images: Sign the images with tools like Notary

or cosign to ensure they have not been tampered with. It

is like putting a seal on a document to prove its

authenticity.

Main Hotfix Release Develop Feature

V 0.1 V 0.2 V 1.0

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

232

By following these steps, you can be confident that your

software is built on a solid foundation and is protected from

potential attacks.

6.2. RBAC (Role-Based Access Control)

Role-Based Access Control (RBAC) is essential for

managing access within Kubernetes clusters, ensuring that

only authorized users and services can perform specific

actions. Implementing strict RBAC policies helps restrict

access to sensitive resources, minimizing the risk of

unauthorized or harmful deployments.

For example, in a Kubernetes environment with multiple

teams and roles, RBAC can be used to define and enforce

permissions. Developers may be granted read-only access to

production namespaces, while senior engineers or DevOps

personnel would have the necessary permissions to manage

deployments. This approach significantly reduces the risk of

accidental or malicious changes that could affect the security

or stability of the system.

6.3. Secrets Management

Ensuring the security of sensitive data, such as API keys,

passwords, and credentials, is vital for the integrity of your

Kubernetes deployments. Kubernetes offers native support for

Secrets objects, but it is important to follow best practices to

manage them securely and avoid exposing sensitive

information. For example, if your application needs to access

an external API using an API key, avoid hardcoding the key

directly into your application. Instead, store it securely as a

Kubernetes Secret. You can create a Secret using the following

command:

kubectl create secret generic my-api-key --from-

literal=API_KEY=your-api-key-here

Once the Secret is created, your application can reference

it securely, reducing the risk of exposing the key in your

source code. Consider integrating a dedicated Secrets

Management tool like HashiCorp Vault for enhanced security.

Vault offers additional features such as dynamic secrets,

automatic key rotation, and fine-grained access control,

further strengthening the security of your sensitive data.

6.4. Automated Security Testing

Adding security checks to your CI/CD pipeline is a smart

way to catch vulnerabilities early and ensure your Kubernetes

deployments are secure. Tools like Snyk or OWASP

Dependency-Check help monitor your code and its

dependencies for potential security issues. For example,

whenever a new Docker image is built or updated in your

CI/CD process, a tool like Snyk can automatically scan the

dependencies for known vulnerabilities. If it finds any, the

pipeline can stop the deployment, preventing any insecure

code from being deployed to your Kubernetes cluster. This

proactive approach ensures that vulnerabilities are detected

early, reducing the chances of pushing faulty or unsafe code to

production. It is insufficient to rely on Kubernetes’ built-in

security features to ensure secure Kubernetes releases. By

incorporating best practices like image scanning, role-based

access control (RBAC), secrets management, and automated

security testing, SREs can enhance security while

streamlining deployments. Combining these strategies with

Kubernetes’ native features helps keep applications secure and

performant and reduces the risk of security breaches, leading

to smoother and faster deployments.

7. Rollback Strategies for Zero-Downtime

Deployments
Even with the best planning, issues may arise during a

release. A clear and efficient rollback strategy ensures that

production systems remain stable.

7.1. Automated Rollbacks

Leverage Kubernetes’ native deployment capabilities to

automate rollbacks. If a release fails (e.g., pods crash, service

health checks fail), Kubernetes can automatically revert to the

previous stable version.

7.2. Manual Rollback and Approval

In addition to automatic rollbacks, some teams may prefer

a manual approval step, where a failed deployment triggers a

notification to a responsible team for review and decision-

making before a rollback is triggered.

7.3. Versioned Deployments

Maintain multiple stable versions of the application (e.g.,

blue-green deployment or canary deployment). If the current

version causes issues, you can quickly switch to the previous

version, ensuring minimal disruption.

7.4. Monitoring and Alerts

Set up robust monitoring and alerting systems (using tools

like Prometheus, Grafana, or ELK stack) to quickly detect

issues post-release. Monitoring helps identify performance

degradation or failures early, allowing you to take corrective

action before a full-blown issue occurs.

Having a solid rollback strategy is key to keeping systems

stable during deployments. Automated rollbacks in

Kubernetes can quickly fix issues, but manual approvals add

an extra layer of control. Monitoring tools help catch problems

early so teams can act fast to avoid bigger issues, ensuring a

smooth and reliable deployment process.

8. Automated CI/CD Pipelines:
A well-designed Continuous Integration and Continuous

Delivery (CI/CD) pipeline is crucial for efficiently and

securely managing Kubernetes releases. Automation is key in

minimizing human error and speeding up the deployment

process.

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

233

Fig. 2 Example for Automated CI/CD Process

8.1. Pipeline Automation

Automate the entire process from code changes to testing

and deployment. For example, using tools like Jenkins, GitLab

CI/CD, CircleCI, or GitHub Actions can help streamline the

workflow for deploying Kubernetes applications.

8.2. Test Automation

Automate the testing process by including unit,

integration, and end-to-end tests in your pipeline. Kubernetes-

based environments (like development and staging) can be set

up to test changes before they go live in production, ensuring

everything works properly.

8.3. Continuous Deployment/Delivery

Set up continuous deployment to automatically push

changes to stage or production once the tests pass. This

reduces manual intervention and allows you to release updates

faster. For instance, after a successful test run, the code can be

automatically deployed to a staging environment, and after

additional validation, it can be pushed to production without

delay.

9. Chaos Engineering
Chaos Engineering is about intentionally introducing

failures into a system to understand how it behaves under

stress and to ensure it remains reliable during unexpected

situations. By applying this concept to Kubernetes release

management, you can ensure that your deployments are

resilient and capable of handling disruptions without affecting

end users.

Here are some key ways to do this:

9.1. Simulate Failures

Use tools like Gremlin or Chaos Mesh to create realistic

failure scenarios, such as:

9.1.1. Container Crashes

Simulate situations where containers fail or stop running

unexpectedly.

9.1.2. Network Issues

Test how your system responds to network partitions or

latency.

9.1.3. Service disruptions

Introduce failures in backend services to observe how the

system handles dependencies. These simulations help identify

weak spots in your infrastructure before they affect your live

systems.

9.2. Test in Staging

Always test failures in a non-production environment first

to avoid impacting real users. This helps ensure your system

is ready for production disruptions.

9.2.1. Automate Failure Testing

Automate chaos experiments in your CI/CD pipeline to

continuously test your system’s resilience with each new

release.

9.2.2. Learn and Improve

After each test, analyze what went wrong and improve

your system over time. By integrating chaos engineering into

your Kubernetes release management process, you can ensure

that your infrastructure is prepared for the expected and

resilient to the unexpected, leading to better user experiences

and less downtime.

10. Monitoring and Observability Integration:
Monitoring and observability are essential tools for

ensuring the success of Kubernetes releases. You can quickly

identify and resolve issues by tracking your applications’

health and performance, minimizing downtime and improving

user experience.

10.1. Key Practices

10.1.1. Centralized Logging

Gather logs from all parts of your Kubernetes system to

pinpoint problems quickly.

10.1.2. Distributed Tracing

Track the flow of requests through your application to

identify performance bottlenecks.

10.1.3. Real-time Monitoring

Continuously monitor key metrics like CPU usage,

memory, and error rates.

BUID TEST MERGE
Automatically

Release

Automatically

Deploy

Continuous Integration Continuous Delivery Continuous Deployment

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

234

10.1.4. Automated Alerts

Receive immediate notifications when issues arise,

allowing for prompt response.

10.2. Example

Imagine you have just deployed a new version of your e-

commerce application to Kubernetes. By using monitoring

tools, you can:

10.2.1. Identify slow load times

If users are reporting slow page loads, distributed tracing

can help you identify the specific service causing the delay.

10.2.2. Detect increased error rates

Real-time monitoring can alert you to a sudden spike in

errors, allowing you to investigate and fix the issue before it

impacts many users.

10.2.3. Track resource usage

Monitor CPU and memory usage to ensure your

application performs efficiently and does not consume

excessive resources. By effectively implementing monitoring

and observability practices, you can significantly improve the

reliability and performance of your Kubernetes deployments.

11. Post-Release Monitoring and Feedback

Loops
Continuous improvement is a key tenet of SRE, and your

release management process should include post-release

monitoring and feedback loops.

11.1. Post-Release Reviews

After each release, conduct a post-mortem or release

review meeting to analyze what went well and what did not.

This helps you improve processes and avoid similar issues in

the future.

11.2. Continuous Feedback

Use feedback from both users and internal stakeholders

(via metrics, logs, or direct user reports) to identify and fix

issues early after a release.

12. The Importance of Documentation
Effective documentation is a critical component of

Kubernetes release management. While the technical aspects

of deployment and monitoring are essential, clear and well-

organized documentation ensures that everyone on the team is

on the same page and can easily navigate the release process.

It also plays a vital role in maintaining consistency,

understanding, and accountability across the entire

development and operations lifecycle.

12.1. Clear Process Documentation

Documenting the release management process, from

planning and risk assessment to deployment and rollback

strategies, helps ensure that all team members know their

responsibilities and the steps involved in each release. This

reduces confusion, improves collaboration, and minimizes

errors due to miscommunication.

12.2. Standard Operating Procedures (SOPs)

Creating SOPs for different scenarios (e.g., canary

releases, blue-green deployments, rollbacks, or incident

response) ensures the team can handle various situations

consistently and efficiently. This can significantly reduce the

time needed to resolve issues and maintain production uptime.

12.3. Knowledge Sharing

Documentation provides a single source of truth for

teams. It enables new team members to quickly understand the

release process, configurations, and troubleshooting steps

without relying on others for explanations. This helps onboard

new members faster and builds long-term knowledge retention

within the team.

12.4. Audit and Compliance

Proper documentation is vital for tracking changes,

deployments, and issues, especially for audit or compliance

purposes. It helps teams identify what was deployed when it

was deployed, and what the associated risks or changes were.

This can be essential for troubleshooting, reporting, or

regulatory audits.

12.5. Post-Release Reviews

Documenting post-release reviews and feedback from

previous deployments enables the team to learn from past

experiences. This feedback loop helps continuously improve

the release management process, refine practices, and adjust

the deployment pipeline based on real-world insights.

Documentation ensures consistency, knowledge sharing,

and efficient collaboration in Kubernetes release management.

It empowers teams to execute deployments confidently and

respond to issues swiftly while maintaining clear records of all

activities.

13. Conclusion
By incorporating SRE principles into Kubernetes release

management, teams can significantly enhance their

deployment processes’ reliability, efficiency, and security.

This approach involves careful planning, incremental releases,

and automated pipelines to minimize downtime and maximize

user satisfaction. Key strategies include feature flagging,

canary releases, and blue-green deployments to introduce new

features and mitigate risks gradually.

Robust security measures, such as image scanning and

RBAC, are essential to protect the system from vulnerabilities

and unauthorized access. Effective monitoring and

observability tools, like Prometheus and Grafana, enable

teams to identify and address issues proactively. Moreover,

Praveen Chaitanya Jakku / IJCTT, 72(11), 228-235, 2024

235

comprehensive documentation and knowledge sharing are

crucial for maintaining consistency, facilitating onboarding,

and streamlining troubleshooting. By embracing these

practices, organizations can achieve a smooth and predictable

deployment pipeline, delivering high-quality software that

meets user needs and business objectives.

References
[1] A Guide to Release Management: What it is, Why it’s Important, and Best Practices, Instatus Blog, 2024. [Online] Available:

https://instatus.com/blog/release-management

[2] Tram Tran, 5 Ways to Prioritize Your Software Release Backlog, DevOps digest, 2016. [Online] Available:

https://www.devopsdigest.com/5-ways-to-prioritize-your-software-release-backlog

[3] David Usifo, The Difference Between Iterative and Incremental Development, Dee Project Manager, 2024. [Online] Available:

https://deeprojectmanager.com/incremental-vs-iterative-development/

[4] Swati Khatri, How to Implement Blue-Green Deployment for Faster Releases, Index, 2024. [Online] Available:

https://www.index.dev/blog/how-to-implement-blue-green-deployment-strategies

[5] SLA vs SLO: Tutorial & Examples, Squadcast, 2022. [Online] Available: https://www.squadcast.com/sre-best-practices/sla-vs-slo

[6] Jake Brereton, Mastering Git Branching Strategies for Software Development Success, Launch Notes, 2021. [Online] Available:

https://www.launchnotes.com/blog/mastering-git-branching-strategies-for-software-development-success

[7] Harness Team, Software Rollback, Harness, 2024. [Online] Available: https://www.harness.io/blog/understanding-software-rollbacks

[8] A Guide to Understanding Observability and Monitoring in SRE Practices, SRE Fundamentals, Blameless, 2021. [Online] Available:

https://www.blameless.com/blog/observability-and-monitoring

[9] Chaos Engineering: The History, Principles, and Practice, Gremlin, 2023. [Online] Available:

https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice

[10] Isaac Sacolick, What Is CI/CD? Continuous Integration and Continuous Delivery Explained, InfoWorld, 2024. [Online] Available:

https://www.infoworld.com/article/2269266/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html

